Part I	Exploring and Understanding Data
Chapter 1	Stats Starts Here
Statistics is	a way of reasoning, along with a collection of tools and methods, designed to help us understand the world.
Statistics are	particular calculations made from data.
A statistic is	A numerical summary of data
Statistics is about	variation
Chapter 2	Data
Data are	values along with their context
The context for data values is provided by \qquad	The "W's" Why do we care about the data? Who are the individuals described by the data? What variables do the data contain? When Where How (Necessary)
Three steps to doing Statistics right:	Think -were you're headed and why (the "W's"). Show - the mechanics of calculating statistics and making displays. Tell - what you've learned remembering the " 4 Cs ."
4 Cs: conclusions are	Clear, concise, complete, and in context.
Data table	An arrangement of data in which each row represents a case and each column represents a variable.
Case	An individual about whom we have data (row of data table)
Individual	Object described by a set of data (person, animal, thing, identifier variable)
Variable	Holds information about the same characteristic for many cases. (column of data table)
Variables can usually be identified as either \qquad or \qquad	Categorical or quantitative
Categorical variable	Places an individual into one of several groups or categories
Quantitative variable	Has numerical values (with units) that measure some characteristic of each individual.
Ordinal variable \qquad You must look at the \qquad of your study to decide whether to treat it as \qquad or \qquad	Reports order with out natural units. Why Categorical or quantitative
Identifier variable	ID number or other convention often used to protect confidentiality (Categorical variable with exactly one individual in each category)
Chapter 3	Displaying and Describing Categorical Data
Three things you should always do first with data:	1. Make a picture - a display will help you think clearly about patterns and relationships that may be hiding in your data. 2. Make a picture - show important features and patterns in your data 3. Make a picture - best way to tell others about your data.
To analyze categorical data, we often use \qquad or \qquad	counts (frequencies) or percents (relative frequencies)

of individuals that fall into various categories.	
(Relative) Frequency table [Distribution of a categorical variable]	Lists the categories in a categorical variable and the (percentage) count of observations for each category.
Area principle	In a statistical display, each data value should be represented by the same amount of area.
(Relative Frequency) Bar chart	Shows a bar representing the (percentage) count of each category in a categorical variable.
Pie chart	Shows how a "whole" divides into categories by showing a wedge of a circle whose area corresponds to the proportion in each category.
Contingency table	Displays counts (percentages) of individuals falling into named categories on two (or more) variables, columns vs. rows. The table categorizes the individuals on all variables at once, to reveal possible patterns in one variable that may be contingent on the category of the other.
Marginal distribution	The distribution of one of the variables alone is seen in the totals found in the last row/column of a contingency table. (see frequency table)
Conditional distribution	The distribution of a variable restricting the Who to consider only a smaller group of individuals. [A single row (column) of the contingency table.]
Relationships among categorical variables are described by calculating from the \qquad given. This avoids \qquad	percents counts count variation between them.
Segmented Bar Chart	A stacked relative frequency bar chart (100% total). Often better than a pie chart for comparing distributions. [a pie chart within a bar chart]
Independent variables	The conditional distribution of one variable is the same for each category of the other. [if rows (columns) of contingency table have $=$ distributions]
Simpson's paradox	When averages are taken across different groups, they can appear to contradict the overall averages
Chapter 4	Displaying Quantitative Data
Distribution of a quantitative variable	Tells us what values a variable takes and how often it takes them. Shows the pattern of variation of a (quantitative) variable.
Stem-and-leaf plot	A sideways histogram that shows the individual values. Bins/intervals might be the tens places with the ones places strung out sequentially to the right.
Back-to-back stem-and-leaf plot	Useful for comparing two related distributions with a moderate number of observations.
Dotplot	Graphs a dot for each case against a single axis.
(Relative Frequency) Histogram	Uses adjacent, equal-width bars to show the distribution of values in a quantitative variable. Each bar represents the (percentage) count falling in a particular interval of values. (\% are useful for comparing

	several distributions with different numbers of observations.)
A good estimate for how many bars will give a decent histogram =	$\frac{\text { Number of observations }}{5}$
Once we make a picture, we describe a distribution by telling about its	Shape, center, spread, and any unusual features.
Shape	Uniform, single, multiple modes Symmetry vs. skewed
Uniform	A distribution that is roughly flat.
Mode	A hump or local high point in the shape of the distribution of a variable (unimodal, bimodal, multimodal).
Symmetric	A distribution where the two halves on either side of the center look approximately like mirror images of each other.
Skewed (left/right)	A non-symmetrical distribution where one tail stretches out further (to the left/right) than the other.
Center	A "typical" value that attempts the impossible, summarizing the entire distribution with a single number. \{midpoint \}
Spread	A numerical summary of how tightly the values are clustered around the "center." \{range\}
Outliers	Extreme values that don't appear to belong with the rest of the data.
Timeplot	Displays quantitative data collected over time (x-axis). Can reveal trends overlooked by histograms and stem-and-leaf plots that ignore time order. Often, successive values are connected with lines to show trends more clearly.
Time series	Measurements of a variable taken at regular time intervals.
Seasonal variation	A pattern in a time series that repeats itself at know regular intervals of time.
Chapter 5	Describing Distributions Numerically
Median	Middle value (balances data by counts) (equal-areas point)
Range	Max - min data values
p th percentile	Value such that p percent of the observations fall at or below it.
Lower quartile (Q1) Upper quartile (Q3)	Median of the lower half. ($25^{\text {th }}$ percentile) Median of the upper half. ($75^{\text {th }}$ percentile)
Interquartile range (IQR)	Q3 - Q1, the middle half of the data.
5-number summary	Max Q3 Median Q1 Min
Suspected outlier	$\begin{array}{\|ll} \hline \text { If } \quad \text { observation > Q3 + (1.5)(IQR) } \\ \text { Or } \text { observation < Q1 - (1.5)(IQR) } \\ \hline \end{array}$
Boxplot	Displays the 5 -number summary as a central box with whiskers that extend to the non-outlying data values. Particularly effective for comparing groups. However, a histogram or stem-and-leaf plot is a clearer display of the shape of a distribution.
Mean	[Average]

	$\bar{x}=\frac{\sum x}{n}$ Add up all the numbers and divide by n (balance point, by size) (balances deviations)
Deviation	How far each data value is from the mean.
Variance	$s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$ Sum of the squared deviations from the mean, divided by $\mathrm{n}-1$.
Standard deviation	$s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$ The square root of the variance (gets us back to the original units)
Report summary statistics to \qquad decimal places	1 or 2 more than the original data.
When describing the distribution of a quantitative variable, if the shape is skewed then report \qquad If the shape is symmetric then report \qquad and repeat calculations without \qquad if present.	median and IQR (they are based on position) mean and standard deviation (they are based on size/value) outliers
A complete analysis of data almost always includes:	Verbal, visual, and numerical summaries.
Answers are __, not	sentences, numbers
Chapter 6	The Standard Deviation as a Ruler and the Normal Model
Adding (subtracting) a constant to every data value \qquad the same constant to measures of position/center and \qquad measures of spread.	adds (subtracts) does not change
Multiplying (dividing) every data value by a constant \qquad the same constant to measures of position/center and \qquad measures of spread.	multiplies (divides) multiplies (divides)
Changing the center and spread of a variable is equivalent to	changing its units.
Standardizing	Uses the standard deviation as a ruler to measure distance from the mean creating z -scores $z=\frac{(x-\bar{x})}{s}$
z-scores tell us \qquad important uses are:	the number of standard deviations a value is from the mean. 1. Comparing values from different distributions (decathlon events) or values based on different units.

	2. Identifying unusual or surprising values among data. 3.
Units can be eliminated by _- have no units.	standardizing the data. z-scores
When we standardize data to get First we do two things. subtracting the mean. The data by	z-scores shift
rescale	

equation or lug around a myriad of tables for every possible $N(\mu, \sigma)$	
Normal percentile	Read from a table of normal probabilities, it gives the percentage of values in a standard normal distribution found lying below a particular z-score.
The easiest conversion (from standard deviations to percents) is to remember the \qquad rule. About \qquad of the data fall within 1 standard deviation of the mean, about \qquad within 2 and about \qquad within 3.	$\begin{array}{\|l} \hline 68,95,99.7 \\ 68 \% \\ \\ 95 \% \\ 99.7 \% \\ \hline \end{array}$
Use this TI function if asked to find \% or area	normalcdf(lower z-score, upper z-score)
Use this TI function If given \% or area	invNorm(area to left) output is z -score that may have to be converted back
\qquad is a more precise method than a histogram of checking the nearly normal condition, that the shape of the data's distribution is \qquad and \qquad	A normal probability plot unimodal roughly symmetric
If the normal probability plot is roughly \qquad Then a normal model	a diagonal straight line will approximate the (actual) data well.
The \qquad of a normal curve identifies one standard deviation from the mean.	Inflection point
3 reasons normal distributions are important in statistics:	1. Good descriptions for some distributions of real data. 2. Good approximations to many kinds of chance outcomes. 3. Utilized in many statistical inference procedures.
Part II	Exploring Relationships Between Variables
Chapter 7	Scatterplots, Association, and Correlation
Scatterplot \qquad is plotted on the x -axis. \qquad is plotted on the y-axis.	Shows the relationship between two quantitative variables on the same cases (individuals). Explanatory (independent/input) variable Response (dependent/output) variable
Once we make a scatterplot, we describe association by telling about:	1. Form: straight, curved, no pattern, other? 2. Direction: + or - slope? 3. Strength: how much scatter \{how closely points follow the form \} 4. Unusual Features: outliers, clusters, subgroups?
\qquad is a deliberately vague term describing the relationship between two variables. If positive then \qquad	Association increases in one variable generally correspond to increases in the other.

Correlation describes the \qquad and \qquad of the \qquad relationship between two \qquad variables, without significant \qquad	strength direction, linear quantitative outliers.
3 conditions needed for Correlation:	1. Quantitative Variables 2. Straight Enough 3. Outlier
The correlation coefficient is found by \qquad It's value ranges from \qquad , it has no \qquad , and is immune to changes of \qquad	finding the average product of the z-scores (standardized values). $\begin{aligned} & \quad r=\frac{\sum z_{x} z_{y}}{n-1} \\ & -1 \text { to }+1 \\ & \text { units. } \\ & \text { scale or order. } \end{aligned}$
Perfect correlation $\mathrm{r}=$ \qquad occurs only when \qquad	± 1 the points lie exactly on a straight line. (you can perfectly predict one variable knowing the other)
No correlation $\mathrm{r}=$ \qquad means that knowing one variable gives you \qquad	```0 no information about the other variable.```
You should give the \qquad and \qquad of x and y along with the correlation because ...	Mean Standard deviation Correlation is not a complete description of two-variable data and the its formula uses means and standard deviations in the z -scores.
Scatterplots and correlation coefficients never prove	causation.
Lurking variable	A variable other than x and y that simultaneously affects both variables, accounting for the correlation between the two.
To add a categorical variable to an existing scatterplot	use a different plot color or symbol for each category.
Chapter 8	Linear Regression
Regression to the mean	Because the correlation is always less than 1.0 in magnitude, each predicted \hat{y} tends to be fewer standard deviations from its mean than its corresponding x was from its mean. ($\hat{\mathrm{z}}_{y}=r z x$)
Residual If positive If negative	Observed value - predicted value $y-\hat{y}$ Then the model makes an underestimate. Then the model makes an overestimate.
Regression line Line of best fit For standardized values For actual x and y values	The unique line that minimizes the variance of the residuals (sum of the squared residuals). $\begin{aligned} & \hat{\mathrm{z}}_{y}=r z_{x} \\ & \hat{y}=b_{0}+b_{1} x \end{aligned}$
To calculate the regression line in real units (actual x and y values)	1. Find slope, $\quad b_{1}=\frac{r s_{y}}{s_{x}}$ 2. Find y-intercept, plug b_{1} and point (x, y) [usually (\bar{x}, \bar{y})] into $\hat{y}=b_{0}+b_{1} x$ and solve for b_{0} 3. Plug in slope, b_{1}, and y-intercept, b_{0}, into $\hat{y}=b_{0}+b_{1} x$

3 conditions needed for Linear Regression Models: /* same as correlation */	1. Quantitative Variables 2. Straight Enough - check original scatterplot \& residual scatterplot 3. Outlier (clusters) -points with large residuals and/or high leverage
R^{2}	The square of the correlation, r, between x and y The success of the regression model in terms of the fraction of the variation of y accounted for by the model. (XX\% of the variability in y is accounted for by variation in x) (differences in x explain $\mathrm{XX} \%$ of the variability in y)
A high R^{2}	Does not demonstrate the appropriateness of the regression.
Looking at a \qquad is a good way to check the Straight Enough Condition. It should be \qquad	a scatterplot of the residuals vs. the x-values. (appropriateness) boring: uniform scatter with no direction, shape, or outliers..
The \qquad is the key to assessing how well the model fits (extracts the form).	variation in the residuals
Standard deviation of the residuals, s_{e}	Gives a measure of how much the points spread around the regression line.
$1-R^{2}$	The fraction of the original variation left in the residuals. (The percentage of variability not explained by the regression line.)
Extrapolations	Dubious predictions of y-values based on x-values outside the range of the original data.
Chapter 9	Regression Wisdom
What can go wrong with regression:	1. Inferring Causation 2.Extrapolation 3.Outliers and Influential Points 4.Change in Scatterplot Pattern 5.Means (or other summaries) rather than actual data.
High leverage points With enough leverage the \qquad can appear deceptively small.	Have x-values far from $\overline{\mathrm{x}}((\overline{\mathrm{x}}, \overline{\mathrm{y}})$ is the fulcrum) and pull more strongly on the regression line. residuals
Leverage and residual produce three flavors of outliers:	1) Extreme Conformers: don't influence model but do inflate R2 2) Large Residuals: might not influence model much but aren't consistent with the overall form. 3) Influential Points: those that distort the model
Influential point [most menacing]	Omitting it from the data results in a very different regression model
Influential points are often difficult to detect because	They distort the model which causes their residual to be small.
The surest way to verify an outlier and its affects is to	Calculate the regression line with and without the suspect point.
A histogram of the residuals	Compliments a scatterplot of the residuals in the search for conditions, such as subsets, that may compromise the effectiveness of the regression model.
Consider comparing two or more regressions if you find	1) Points with large residuals and/or high leverage. 2) Change in Scatterplot Pattern as a result of changes over time or subsets that behave differently.

Regressions based on summaries of the data Because \qquad	Tend to look stronger than the regression on the original data. Summary statistics are less variable than the underlying data.
Chapter 10	Re-expressing Data: Get It Straight!
Re-expression	A means of altering the data to achieve the conditions/structure necessary to utilize particular summaries or models.
Several reasons to consider a re-expression:	1. Make the form of a scatterplot straighter. 2. Make the scatter in a scatterplot more consistent (not fan shaped). 3. Make the distribution of a variable (histogram) more symmetric. 4. Make the spread across different groups (boxplots) more similar.
Ladder of Powers A good starting point is \qquad If all else fails \qquad	Orders the effects that the re-expressions have on the data $\begin{array}{lllccc} 2 & 1 & 1 / 2 & 0 & -1 / 2 & -1 \\ \mathrm{y}^{2} & \mathrm{y} & \sqrt{\mathrm{y}} & \log \mathrm{y} & -1 / \sqrt{y} & -1 / \mathrm{y} \end{array}$ taking logs. try whacking the data with two $\operatorname{logs}(\log \mathrm{x}$ and $\log \mathrm{y})$.
Base 10 logs are roughly	One less than the number of digits needed to write the number.
Re-expression limitations:	1. Can't straighten scatterplots that turn around. 2. Can't re-express "-" data values with $\sqrt{ }$ (+constant to shift >0) 3. Minimal affect on data values far from 1-100. (-constant to shift) 4. Can't unify multiple modes.
When discussing the accuracy or confidence of the linear regression model be sure to comment on both the \qquad \& \qquad	Appropriateness of the model as indicated by the residual plot Success of the model as indicated by R^{2}
Part III	Gathering Data
Chapter 11	Understanding Randomness
What is it about random selection that makes it seem fair?	1. Nobody can guess the outcome in advance. 2. Outcomes are equally likely.
Random event/phenomenon	We know what outcomes could happen, but not which particular values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions.
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both . . .	our greatest enemy and our most important tool.
Simulation	A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true realworld relative frequencies we are trying to model. An artificial representation of a random process used to study its long-term properties.
Component	The most basic situation in a simulation in which something happens at random. [random happening]
Outcome	An individual result of a component [result of random happening]

Trial	The sequence of several components representing events that we are pretending will take place.
Response variable	The result of each trial with respect to what we were interested in.
Chapter 12	Sample Surveys
Population	The entire group of individuals or instances about whom we hope to learn, but examining all of them is usually impractical, if not impossible.
Sample	A (representative) subset of a population, examined in hope of learning about the population.
Sample survey	A study that asks questions of a sample drawn from some population in the hope of learning something about the entire population.(Polls)
Statistic They are written in	Any summary calculated from the (sampled) data. Latin ($\bar{x}, s, r, b, \hat{p}$)
Parameters They are written in	Key numbers in mathematical models used to represent reality. Greek ($\mu, \sigma, \rho, \beta, p$)
Population parameter	A numerically valued attribute of a model for a population, often unknowable and estimated from sampled data.
Sample statistic	Correspond to, and thus estimate, a population parameter.
Representative Sample	Statistics computed from it accurately reflect the corresponding population parameters.
Bias	Any systematic failure of a sampling method to represent its population. It is almost impossible to recover from.
5 common bias errors: (Biases I hope to)	1. Nonresponse - when a large fraction of those sampled will not or cannot respond. 2. Voluntary response - individuals can choose on their own whether to participate in the sample. Always yields invalid samples. 3. Response - when respondents' answers might be affected by survey design, such as question wording or interviewer behavior 4. Convenience - when the sample is comprised of individuals readily available. Always yields a non-representative sample. 3. Undercoverage - when individuals from a subgroup of the population are selected less often than they should be.
\qquad is often the best use of time and resources when sampling or surveying.	Reducing biases
Randomization	The best defense against bias. (stirring to make sure that on average the sample looks like the rest of the population)
Simple random sample (SRS)	A sample in which each set of n elements in the population has an equal chance of selection. The standard method of utilizing radomization to make the sample representative of the population of interest.
Sampling variability Sampling error	The natural tendency of randomly drawn samples to differ from each other.
The precision of the statistics of	

a sample depend on not	the sample size (soup spoon) its fraction of the larger population.
Census	A sample that consists of the entire population.
Sampling frame	A list of individuals, which clearly defines but may not be representative of the entire population, from which the sample is drawn.
Stratified samples	These samples can reduce sampling variability by identifying homogeneous subgroups and then randomly sampling within each.
Cluster samples	These samples randomly select among heterogeneous subgroups that each resemble the population at large, making our sampling tasks more manageable.
Systematic samples	These samples can work, when there is no relationship between the order of the sampling frame and the variables of interest, and are often the least expensive method of sampling. But we still want to start them randomly.
Multistage sample	A sampling scheme that combines several sampling methods.
Identify the W's: Why What Who When, Where, and How /* previously Who < What */	Population and associated sampling frame. Parameter of interest and variables measured. Sample actually drawn. Given by the sampling plan.
Chapter 13	Experiments and Observational Studies Observational studyA study based on data in which no manipulation of factors has been employed (researchers don't assign choices). Usually focuses on estimating differences between groups but is not possible to demonstrate a causal relationship. Often used when an experiment is impractical. Subjects are selected and then their previous conditions or behaviors are determined. Subjects are followed to observe future outcomes. No treatments are deliberately applied.
a are individuals on whom	axperimental units factors.
an experiment is performed.	

Usually called \qquad or \qquad when human.	Subjects Participants
Response	A variable whose values are compared across different treatments.
The 4 principals of experimental design:	1. Control sources of variation other than the factors we are testing by making conditions as similar as possible for all treatment groups. 2. Randomize subjects to treatments to even out effects that we cannot control. 3. Replicate over as many subjects as possible. Would like to get results from a representative sample of the population of interest. 4. Block and then randomize within to reduce the effects of identifiable attributes of the subjects that cannot be controlled.
Control group	The experimental units assigned to a baseline treatment level, typically either the default treatment, which is well understood, or a null, placebo treatment. Their responses provide a basis for comparison.
Statistically significant	When an observed difference is too large for us to believe that it is likely to have occurred naturally (only by chance).
Placebo	A (fake) treatment known to have no effect, administered so that all groups experience the same conditions.
Placebo effect	The tendency of many human subjects (often 20% or more of experimental subjects) to show a response even when administered a placebo.
Blinding	Individuals associated with an experiment are not aware of how subjects have been allocated to treatment groups.
2 main classes of individuals who can affect the outcome of an experiment: Single-blind Double-blind	1. those who could influence the results (subjects, treatment administrators, or technicians) 2. those who evaluate the results (judges, treating physicians, etc.) When every individual in either of these classes is blinded. When everyone in both classes is blinded.
Block	Same idea for experiments as stratifying is for sampling. Group together subjects that are similar and randomize within those groups as a way to remove unwanted variation (of the differences between the groups so that we can see the differences caused by the treatments more clearly) (Doing parallel experiments on different groups.)
Matching	In a retrospective or prospective study, subjects who are similar in ways not under study may be paired and then compared with each other on the variables of interest as a way to reduce unwanted variation in much the same way as blocking.
Designs: Randomized block design Completely random design	The randomization occurs only within blocks. All experimental units have an equal chance of receiving any particular treatment.
The best experiments are usually:	Randomized, comparative, double-blind, placebo-controlled.
Lurking (Confounding) variables are outside influences	

that make it \qquad we are modeling with \qquad	harder to understand the relationship regression and observational studies (a designed experiment).
Lurking variable	Creates an association between two other variables that tempts us to think that one may cause the other. [regression analysis or observational study]
Confounding	Some other variable associated with a factor has an effect on the response variable. [experiments] Arises when the response we see in an experiment is at least partially attributable to uncontrolled variables.
Part IV	Randomness and Probability
Chapter 14	From Randomness to Probability
Probability	The proportion of times the event occurs in many repeated trials of a random phenomenon. (the long-term relative frequency of an event)
The rules and concepts of probability give us a language to talk and think about \qquad	Random phenomena.
Trial	A single attempt or realization of a random phenomenon.
Outcome	The value measured, observed, or reported for each trial.
Event	A combination of outcomes usually for the purpose of attaching a probability to them. Denoted with bold capital letters, A, B, or C.
Independent	The outcome of one trial doesn't influence or change the outcome of another.
The Law of Large Numbers (LLN)	The long-run relative frequency of repeated independent events settles down to the true probability as the number of trials increases.
Law of Averages (The lesson of LLN)	Assumes that the more something hasn't happened, the more likely it becomes. Random processes don't need to compensate in the short run to get back to the right long-run probabilities. (Streaks happen - the coin can't remember what happened and make things come out right.)
\qquad is just a casual term for probability.	Relative frequencies [at the beginning of the year it was a code-word for percent]
Probability of the event A	The likelihood of the event's occurrence $\begin{aligned} & P(\mathbf{A})=\frac{\text { number of outcomes in } \mathbf{A}}{\text { total number of outcomes }} \\ & 0 \leq P(\mathbf{A}) \leq 1 \end{aligned}$
Sample Space, \boldsymbol{S}	The collection of all possible outcome values.
Something Has to Happen Rule	The sum of the probabilities of all possible outcomes must be 1 . $P(\boldsymbol{S})=1$
Complement Rule	The probability of an event occurring is 1 minus the probability that it doesn't occur. $P(\mathbf{A})=1-P\left(\mathbf{A}^{\mathbf{c}}\right)$
Disjoint	Two events that share no outcomes in common, mutually exclusive. (outcomes cannot happen at the same time, one prevents the other)
The \qquad says: If \mathbf{A} and \mathbf{B} are disjoint events, Then the probability of \mathbf{A} or \mathbf{B}	Addition Rule $P(\mathbf{A} \cup \mathbf{B})=P(\mathbf{A})+P(\mathbf{B}) \quad ; \mathrm{U}=\text { Union }$
An assignment of probabilities to outcomes is legitimate if	Each probability is between 0 and 1(inclusive) The sum of the probabilities is 1

The \qquad says: If \mathbf{A} and \mathbf{B} are independent events, Then the probability of \mathbf{A} and \mathbf{B}	Multiplication Rule $P(\mathbf{A} \cap \mathbf{B})=P(\mathbf{A}) \times P(\mathbf{B}) \quad ; \cap=\text { Intersection }$
Chapter 15	Probability Rules!
\qquad and \qquad should be used to display the sample space and aid probability calculations.	Venn diagrams, two-way contingency tables
When working with probabilities: "or" is the \qquad of the two events and translates into \qquad "and" is the \qquad of the two events and translates into \qquad "not" \& "at least ..." often indicate \qquad	Union $+$ Intersection X Complement
The \qquad says: For any two events, \mathbf{A} and \mathbf{B}, The probability of \mathbf{A} or \mathbf{B}	General Addition Rule (avoids double counting when not disjoint) $P(\mathbf{A} \cup \mathbf{B})=P(\mathbf{A})+P(\mathbf{B})-P(\mathbf{A} \cap \mathbf{B})$
Conditional Probability [restricts the "Who"]	$P(\mathbf{B} \mid \mathbf{A})=\frac{P(\mathbf{A} \cap \mathbf{B})}{P(\mathbf{A})}$ $P(\mathbf{B} \mid \mathbf{A})$ is read "the probability of \mathbf{B} given \mathbf{A}."
The \qquad says: For any two events, \mathbf{A} and \mathbf{B}, The probability of \mathbf{A} and \mathbf{B}	General Multiplication Rule (adjusts for non-independence) $P(\mathbf{A} \cap \mathbf{B})=P(\mathbf{A}) \times P(\mathbf{B} \mid \mathbf{A})$
Events \mathbf{A} and \mathbf{B} are disjoint	When $P(\mathbf{B} \mid \mathbf{A})=0$ (From conditional probability formula because the intersection as shown in a Venn diagram is 0 .) /*see IL notes*/
Events A and B are independent	When $P(\mathbf{B} \mid \mathbf{A})=P(\mathbf{B})$
Tree diagram	Useful for showing sequences of (conditional) events and when utilizing the General Multiplication Rule. The probabilities of each set of branches as well as disjoint final outcomes sum to 1 .
Reverse Conditioning We have $P(\mathbf{A} \mid \mathbf{B})$ but want \qquad We need to find \qquad and \qquad With the help of \qquad	$\begin{aligned} & P(\mathbf{B} \mid \mathbf{A}) \\ & P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A}) \\ & \text { a tree diagram } \end{aligned}$

